
Formalisms for encoding Polish multiword
expressions

Radosław Moszczyński

December 2006

Abstract

Multiword expressions are problematic at many stages of natural language
processing due to their idiosyncratic linguistic properties, and the ability
to undergo syntactic transformations. In inflectional languages, such as
Polish, processing them is especially difficult since the repertoire of vari-
ations they can undergo is greater than in the case of fixed word order
languages.

The report presents several linguistic formalisms and evaluates them on
the basis of their suitability for encoding Polish multiword expressions.
It includes a detailed description of their most prominent features, and a
selection of examples which show exactly how effective the formalisms are
when used for Polish.

Keywords: idioms, multiword expressions, formal linguistics, natural language

processing

1 Introduction

The primary aim of this report is to evaluate a number of linguistic formalisms
from the point of view of encoding Polish multiword expressions.
In the report the term “multiword expression” will be used to refer to any

kind of linguistic object that consists of several orthographic words, but should
be treated as a whole for the purposes of natural language processing, due
to idiosyncratic syntactic and/or semantic properties. In this sense multiword
expressions can also be (and will be in this report) referred to as “idioms”. A
summary of several theoretical linguistic descriptions of multiword expressions
can be found in [10].
Multiword expressions require a formal representation for several reasons.

Some of them follow morphological or syntactic patterns that are incorrect from
the point of view of grammar rules, and thus can cause failures of automatic
analyzers. On the other hand, some multiword expressions are correct syntac-
tically, but their meaning is not compositional, and therefore they should be
recognized as wholes by such applications as electronic dictionaries.
The main difficulty with providing a formal description of idioms is the fact

that many of them are not fixed phrases. They can undergo varying amounts of

1



syntactic transformations, constituent substitutions, word order variations, as
well as adverbial and adjectival modifications. The most complex idioms exhibit
flexibility that is equal to that of regular sentences of a language, which implies
that the formalism used to describe them should be powerful enough to be able
to cover a large part of that language’s grammar.
The structure of the report is the following. Section 2 provides more detailed

information about multiword expressions and postulates the requirements that a
successful formalism for encoding Polish idioms should meet. Section 3 provides
a description of several formalisms which were developed for encoding multiword
expressions in various languages — mostly English — and evaluates them from
the point of view of the requirements presented earlier. Section 4 continues the
presentation with a description of two formalisms developed for slightly different
purposes, but which might be used to encode some types of idioms in a fairly
successful manner. Finally, Section 5 provides conclusions and suggestions for
processing multiword expressions in Polish.

2 Formalism requirements

2.1 Types of multiword expressions

Encoding multiword expressions for natural language processing has to be pre-
ceded by two decisions. Firstly, there is the question of how large a set of
phrases should be encoded. Secondly, when the set has been defined, the re-
maining question is which constituents of the units should be treated as their
invariable and necessary parts.
As far as the first aspect of the issue is concerned, the decisions should be

based on the application. Polish multiword expressions can be roughly divided
into two categories, both of which can pose problems for different types of
automatic language processing tools.
The first category consists of “syntactic idioms”, i.e., phrases that contain

“bound words”, which are not used independently or as parts of other multiword
expressions. This category also covers phrases containing words that follow
abnormal inflectional paradigms (i.e., different from the paradigms they follow
when used outside a given multiword expression). Lastly, the category includes
phrases whose syntactic structure is non-standard from the point of view of the
general rules of the grammar. Both types of phrases are problematic mainly for
morphological and syntactic analyzers, and often result in wrong lemmatization
or syntactic analyses. Some examples of such phrases include:

na oklep, po omacku, na odczepnego, no przecież, nie ma to tamto,
nie rób z tata wariata1

The second category are idioms that are unexceptional from the point of
view of grammar, but are idiosyncratic semantically. This means that their
meaning is either non-compositional or only partially compositional [11], and
that they should be considered as wholes during the process of establishing the
meaning of a sentence. Such phrases should be recognized and treated in a

1These highly idiomatic phrases can be roughly translated as follows: bareback, in darkness,
an adverbial used to describe things done to make somebody leave one alone, but of course!,
anyway, don’t make a fool out of me.

2



special way in such applications as context-sensitive electronic dictionaries (cf.
[1]) and computer-aided translation tools. Encoding such units is also beneficial
for the purposes of semantic analysis, as it allows to cut down on the number
of ambiguous interpretations [9]. In Polish, such phrases include:

(1) flaki
tripe-Nom

z
with

olejem
oil-Inst

‘something boring’

(2) kwity
papers-Nom

na
on
kogoś
somebody-Acc

‘materials used to compromise somebody’s reputation’

(3) strugać
to sculpt

wariata
loony-Acc

‘to pretend to be crazy’

The first category of idioms is relatively straightforward to encode, as it
permits little word order variation and almost no modifications. The second
category is different in this respect. Its members usually constitute regular
sentences, with a subject, possibly objects, and all the regular word order vari-
ations, transformations and modifications that are permitted by the language’s
grammar. Encoding this type of idioms requires formalising a large part of the
grammar of a given language. Due to this fact, it seems to be more sensible
to try to recognize such idioms not within raw input, but rather the output
produced by a dedicated syntactic analyzer. However, since most formalisms
created for the purposes of multiword expressions try to encode all the phe-
nomena related to such units on their own (which is more justified in the case
of fixed word order languages like English), this kind of approach will also be
followed in the examples presented in the Appendix.
The other plane of the scope problem is concerned with what components

truly constitute a multiword expression and should be included in its description,
and which are peripheral and/or very variable and can be left out.
This problem is basically limited to multiword expressions that belong to the

second category, and can take an unlimited number of possible phrases to fill
their subject and/or object slots. This can be seen in the following expression:2

(4) komuś
somebody-Dat

przyszło
came

do
to
głowy
head-Gen

coś
something-Nom

‘something came to somebody’s mind’

The most convenient way to encode this kind of idiom would be to assume
that przyszło do głowy is its canonical form and that all the other constituents,
which are the subject and the indirect object, need not be included in the de-
scription. However, the subject of the idiom cannot be omitted in its formal
description, which is normally done in the descriptions of English idioms, be-
cause in Polish, which is a free word order language, the subject can be moved
into a position that is between the “core” constituents of the expression. It is
illustrated in the following example:
2Examples of multiword expressions typeset in italics are their informal representations.

They do not aim at providing an exhaustive list of all the possible variants, but rather the
most naturally sounding form.

3



(5) Wczoraj
yesterday

mi
I-Dat

przyszedł
came

pewien
certain-Nom

pomysł
idea-Nom

do
to
głowy.
head-Gen

‘Yesterday an idea came to my mind.’

Also the indirect object needs to be encoded in the formal representation, for
exactly the same reason as the subject. The following example shows how the
indirect object moves in between the “core” words:

(6) Wczoraj
yesterday

przyszedł
came

mi
I-Dat

do
to
głowy
head-Gen

pomysł.
idea-Nom

‘Yesterday an idea came to my mind.’

This makes all the attempts to formally encode such complex idioms much more
difficult, because the subject and the object can be phrases of arbitrary length
and complexity.
For this reason, encoding “semantic” multiword lexemes at the level of im-

mediate constituents, which is the way pursued by most formalisms created for
English, does not appear to be optimal in the case of Polish.3 It would be more
reasonable to describe slots in the syntactic structure with the names of the
syntactic functions their realizations perform (subject, object), and let special-
ized, external grammar implementations decide what exactly can be a subject,
an object, etc. In this way, the formalism used for multiword expressions would
not have to be able to account for the syntactic structure of the possible slot
realizations, such as noun phrases or non-finite clauses.
Immediate constituents cannot be abandoned completely, as they are the

only way in which it is possible to encode ungrammatical idioms that do not
exhibit regular syntactic relations. It might be possible to assign a valid syn-
tactic structure to such idioms as no nie, but the structure would always be
arbitrary, and it is not clear how such bending of the data to the requirements
of the formalism could be justified from the linguistic point of view.

2.2 Variations and modifications

The first phenomenon that a formalism needs to capture is the fact that many
multiword expressions contain constituents that are either optional or can be
chosen from a limited or an unlimited set of lexemes. As will be seen in Sec-
tion 3, most formalisms provide distinct operators to handle optional elements,
alternative elements, and elements that can be chosen freely from a whole class
of words.
It is much easier to limit the realizations of such “empty slots” in a precise

way when a negation operator is available. If a constituent of a multiword
expression can assume a wide range of realizations of a specific feature (e.g.,
case) except for one, it is much easier to negate the incorrect value instead of
listing all the possible ones.
Another property of multiword expressions that a formalism needs to cover

is their ability to undergo syntactic transformations (such as passivization and
nominalization) and other word order variations. Possible operations of this
type need to be defined for all idioms for two reasons. First of all, a program

3However, this way of encoding will be used in the examples related to formalisms that
follow such conventions.

4



for recognizing idioms needs to be able to do so also in the cases in which the
idiom has assumed a form that is different from its canonical one. Related to
this is the fact that often idioms can undergo only a limited set of operations,
beyond which they lose their idiomatic meaning and become plain combinations
of words. This is illustrated by the following examples:

(7) Jan
John

wyłożył
put out

kawę
coffee-Acc

na
on
ławę.
table-Acc

‘John stated the matters clearly.’

(8) Kawa
coffee-Nom

została
Auxiliary

wyłożona
put out

na
on
ławę.
table-Acc

‘The coffee was put out on the table.’

In the examples above, (7) is idiomatic, whereas the passivized version in (8)
has only a literal interpretation. Knowing exactly which transformations are
possible is necessary to be able to tell the difference between phrases that should
be interpreted idiomatically and literally.
Undergoing syntactic transformations is mostly a property of the more com-

plex semantic idioms, which to some extent behave like regular sentences, but
even some ungrammatical syntactic idioms have a variable word order (e.g., to
nic and nic to). However, in the case of the complex idioms, the transformations
can be defined in terms of syntactic structure changes and, in some cases, their
semantic significance, i.e., the way in which they influence meaning.
The word order variations in syntactic idioms which lack a proper gram-

matical structure do not influence the meaning of the expressions, and usually
cannot be assigned a linguistic explanation. Thus, they should be treated as
permutations of constituents. A successful formalism should be able to express
the fact that an idiom is a permutable set of elements, which might include
either single words or immutable lists of words.
The last property a formalism should be able to capture is information about

agreement between the constituents of multiword expressions. This concerns
only the more complex idioms that have a proper subject-predicate-object struc-
ture, and is not strictly necessary to be able to successfully recognize multiword
expressions. It is possible to assume a “no wrong input” approach and create
a system that will work satisfactorily in some applications. However, such a
system will accept ungrammatical input and will not be suitable for generation.
As far as generating correct idioms is concerned, encoding agreement is not

enough. Another type of information that is needed is semantics. However, a
detailed description of the semantic features of multiword expressions, and the
requirements for handling them, is beyond the scope of this report.

2.3 Other issues and potential problems

This section describes several problematic cases related to multiword expres-
sions. The examples come from Polish, but similar phenomena, except for (10),
can also be observed in English. Neither of the formalisms described in Section
3 is able to account for them without some further extensions.
Consider the following examples:

(9) <nominal phrase : Nom> przy <nominal phrase : Loc>

5



W
in
autobusie
bus-Loc

był
there was

człowiek
man-Nom

przy
near

człowieku.
man-Loc

‘There was a lot of people on the bus.’

(10) Rok <->owski

Zaczął
began

się Rok
year-Nom

Mozartowski.
Mozart-Adj

‘Mozart Year has begun.’

(11) <noun> przez małe/duże <the noun’s first phoneme>

To
it
była
was

sztuka
art-Nom

przez
with

duże
capital

“sz”
“a”

‘It was really great art.’

In example (9) there is a need to encode agreement between the constituents
of the multiword expressions, but in this case the agreement is not concerned
with inflectional features — it is the base forms of the words that should be
the same. The same feature is required to handle multiword expressions that
are pragmatically marked repetitions of the same word, like in the following
example:

– Myślisz, że to obejrzy?
‘– Do you think he’ll watch it?’
– Obejrzy, obejrzy, na pewno będzie ciekawy.
‘– He’ll watch it, he’ll watch it, he will be curious.’

However, even such seemingly easy phenomena display irregularities that need
to be handled separately, such as incomplete repetitions:

– A jak mu się nie spodoba?
‘– And what if he doesn’t like it?’
– Spodoba się, spodoba <. . .>, niech tylko to zobaczy.
‘– He’ll like it, he’ll like it, the moment he sees it.’

Example (10) displays a phenomenon in which the slot-filling operation needs
to be performed below the level of individual words, the part to be inserted being
the stem.
Example (11) contains another kind of “agreement”. Like in the second

case, the analysis has to go below the level of words, but here it is even lower, as
the elements that have to stay in agreement are not morphemes, but individual
graphemes.

3 Formalisms

3.1 IDioms As REgular eXpressions (IDAREX)

3.1.1 Overview

The IDAREX formalism discussed below is an extension of regular expres-
sions created at Xerox laboratories by Lauri Karttunen, Pasi Tapanainen, and

6



Giuseppe Valetto specifically for linguistic purposes [3]. IDAREX provides a
formal way of encoding multiword lexemes with the use of regular expressions.
Each IDAREX pattern describes a set of possible realizations of an idiom. The
machinery behind the formalism that makes it possible to process such encoded
units is based on Xerox’s finite-state compilers.
The formalism is independent of the underlying compiler — there were sev-

eral of them developed by Xerox over the years. The first one was IFSM (Kat-
tunen and Yampol), then came FSC (Tapanainen), and finally XFST (Kart-
tunen). Unfortunately, all of these tools are proprietary and not freely available.
The regular expression formalism employed in IDAREX is presented in detail

in [7]. One of its most important features is that in addition to describing
regular languages (i.e., sets of strings) it also makes it possible to encode regular
relations (which are mappings between two regular languages).
In IDAREX regular relations are used to implement two-level morphol-

ogy, which is a formalism for encoding morphological alterations developed by
Kimmo Koskenniemi in 1980s. Words in this formalism can be represented at
either the lexical level (which is abstract) or the surface level (which represents
concrete realizations of words) — hence two-level morphology. The exact way
in which the two levels are used in IDAREX is explained below.

3.1.2 IDAREX operators and macros

There are four ways for describing individual words in IDAREX expressions
(cf. [16] and [3]), all of them are marked by the way colon is used:

1. :surface-form — e.g., :house

2. :surface-form morphological-variable: — e.g., :record Verb:

3. base-form morphological-variable: — e.g., graduate Verb:

4. word-class-variable — e.g., ADV

The first two classes of expressions describe words that allow no variation,
i.e., they cannot be inflected or modified in any other way. The only difference
between them is that the second class directly specifies the word’s part of speech,
which is required for ambiguous cases (e.g., record as a verb and record as a
noun). The third class describes words that can assume various forms on the
surface level. In the example above the verb graduate can appear in any number,
tense, etc., which is indicated by Verb:. The last class is a variable that, in the
example above, stands for all adverbs and adverbials. Such variables are useful
for encoding idioms that can be modified by a numerous group of words that
would be unpractical to list individually.
The set of operators used to describe operations on words and phrases is the

following:

• nothing — words succeed each other (concatenation)

• *, +, | — basic regular expressions operators

• parentheses () — mark an optional part of the idiom

• brackets [] — group an expression

7



• semicolon ; — finishes an expression

Combined with two-level morphology, the operators can be used to create “local
grammars” capable of generating the whole set of possible realizations of the
idioms they describe. Some examples are provided below and in Section A.1.

kick: :the Adj* :bucket;

:an :iron [:hand|:fist] (:in :a :velvet :glove);

IDAREX has one more very powerful feature which is the possibility to
create macros. Macros are intended for capturing syntactic generalizations in a
concise way, without the need to explicitly list all the transformed variants of
each multiword expression.
Let’s consider the following Polish idiomatic expression:

(12) NP Nom
Noun-NP

nabrać
take in

wody
water-Gen

w
in
usta
mouth-Acc

‘to keep one’s mouth shut’

For the sake of illustration, we will assume that the idiom can have two unique
realizations — one with the subject appearing before the verb, and another one
with the subject postponed to a position after the verb.4 Apart from this, the
verb can be modified on the left or the right hand side with an adverb (in the
case the subject-verb order is inverted, only a left hand side modification is
possible). In order to account for all these variants using IDAREX, it would be
necessary to write the following complex expression:

[NP Nom Adv* :nabrać Adv* :wody :w :usta |
Adv* :nabrać NP Nom :wody :w :usta];

However, the adverbial modifications and the subject-verb inversion are valid
operations for many other idioms, so it is possible to define a macro to avoid
listing all the variants for each expression.
The adverb modification macro is the simpler one of the two and can be

defined like this:

AdvMacro
[Adv* $1 | $1 Adv*]

The macro for handling subject-verb inversion could be defined in the following
way. Note that macros can be nested in order to achieve even greater compact-
ness.

WOMacro
[$1 AdvMacro($2) $3 |
AdvMacro($2) $1 $3]

In order to use the macro, the user needs to pass it arguments which are
IDAREX expressions, which is shown below:
4In reality, the subject can also be realized at the end of the sentence, and in some infrequent

cases also between the objects.

8



WOMacro(NP Nom :nabrać fix(:wody :w :usta))

The fix macro in the example above is used to group the words which have a
fixed order and do not accept modifications. Passing the above expression as an
argument for the macro would instantiate the $n variables with the individual
words in the idiom (variable $3 would be instantiated with :wody :w :usta
because it is treated as a whole). Then the macro would generate all the possible
realizations of the idiom, as shown in the first example.5

3.1.3 Advantages and disadvantages of IDAREX

Despite being used in several large projects, IDAREX does have several draw-
backs. It is very surface-processing oriented, which results in overgeneration
and the possibility for the rules to accept ungrammatical input.
IDAREX provides separate operators for optional elements, alternative and

part-of-speech variables. The latter can be combined with regular expression
operators, which makes it possible to mark repetitive elements. Marking words
that can inflect is possible with two-level morphology operators, which are lim-
ited to the surface and the lexical level (no inflection and unlimited inflection,
respectively). Some sources (e.g., [15]) show that the part-of-speech variables
can be further constrained, but it is never explained in any detail, and therefore
it is not clear exactly how specific the constraints may be.
Transformations can be defined with macros, which are limited to word order

variations. There is no possibility to fully encode more complex operations, such
as passivization, because the formalism does not provide a means for indicating
that a given word changes some of its syntactic features, such as case. Also,
IDAREX does not support encoding agreement information.6 All the tools
created to process the rules are now a part of commercial projects, which makes
them unavailable.
On the whole, IDAREX appears to be a very efficient tool for encoding the

simple “syntactic” idioms (although a permutation operator would be a useful
extension). In the case of the more complex multiword expressions, it can only
be used for recognition, as it fails to account for more complex operations even
in such languages as English.

3.2 PhraseManager

3.2.1 Basic mechanisms and features

The approach to encoding multiword expressions presented in this section has
been used in a lexical database system consisting of two major parts — Word-
Manager and PhraseManager, the former being used for mapping word forms
into their lexemes, and the latter for mapping multiword expressions into their
canonical forms and for recognizing such expressions in text [17].
PhraseManager consists of two formalisms, which are described in [12]. The

first one is “Rule Knowledge Specification” and it is intended for linguists. The

5Actually, it would overgenerate one adverb, but overgeneration is a trade-off for a simple
and effective method of encoding.
6Some sources [15] claim that there is a way to encode agreement information in IDAREX,

but it has not been implemented in the processing tools. Nevertheless, the way in which
agreement should be encoded is not presented.

9



other one is “Entry Knowledge Specification” which is used by lexicographers.
The whole approach leads to a clear division between the job of describing
linguistic operations that idioms can undergo, and the job of collecting and
describing the idioms proper.
Rule Knowledge Specification offers linguists the possibility to define rules

that describe clitics, idiom classes, periphrastic inflection and syntactic trans-
formations. This is to ensure that the system can recognize and generate all the
possible realizations of syntactically flexible multiword expressions. The formal-
ism is powerful enough to capture a considerable part of English grammar. The
following paragraphs contain a description of its most important features.
Periphrastic inflection rules are used to describe the so-called analytical

forms, in which inflectional features are contained not in a single word, but
in a multiword expression. This is the case e.g., in English passive forms, which
consist of an auxiliary verb and a past participle.
A rule for periphrastic inflection in English passive forms is given below (it

reflects such phrases as was given, etc.):

(Cat V) (Mod Ind) + (Cat V) (Mod Part) (Tense Past) =
(POS 1) (CFORM 2) (PERC 1) (Cat V) (Form Passive)

The left hand side contains a description of the kind of strings that the rule
should match, which in this case is an indicative verb ((Cat V) (Mod Ind))
followed by a past participle ((Cat V) (Mod Part) (Tense Past)). The right
hand side indicates how the whole periphrastic inflection cluster should be
treated in further processing. The interpretation of the symbols is as follows:

• (POS 1) — the position of the cluster as a whole, after it has been identi-
fied; in this case, it is supposed to be inserted in the position held by the
first of its constituents

• (CFORM 2) — the citation form should be established on the basis of the
second constituent

• (PERC 1) — the inflectional features are to be percolated from the first
constituent

• (Cat V) — the category of the whole cluster should be verbal

• (Form Passive) — the cluster indicates passive voice

The rules for transformations make it possible to define syntactic operations
which multiword expressions can undergo. Such rules are used subsequently in
the lexicographers’ formalism. Two simple rules for noun-adjective inversion
are presented below:

(VP V (NP Det Adj N)) → (VP V (NP Det N Adj))
(NP Adj N) → (NP N Adj)

The nested lists represent tree structures of the individual phrases. In each list,
the first element is the root of the tree, and the following ones are the daughter
nodes.
When idioms are being processed in PhraseManager, all words that contain

clitics are separated into two parts. The way it is done is described by the
linguists with clitic rules. The example below contains a simple rule for dividing
cannot and can’t into can and not.

10



(Cat V) (Mod Ind) (Tense Pres) {‘‘can’’} + (CElement not)
=
(Cat V) (Mod Ind) (Tense Pres), (CElement not)

The left hand side of the rule specifies the strings that are to be matched, and
the right hand side shows what should be generated as output. The elements
of the rule should be interpreted as follows:

• + and , indicate that the surrounding elements should be interpreted as
continuous and separated, respectively

• the word can in curly braces indicates the orthographic form of the string
which is supposed to be matched

• (CElement not) is a reference to an entity not which should be defined
elsewhere as being either orthographic not or ’t

The final elements that need to be defined by the linguist using Rule Knowl-
edge Specification are the syntactic classes that multiword expressions can be-
long to. This is because one of the assumptions of PhraseManager is that
multiword expressions can be categorized into syntactic classes, on the basis of
their internal structure. This assumption reflects a classification that has been
created for a subset of English and German in [4].
Each class is assigned with a set of properties that describe its transfor-

mational potential and possible adverbial and adjectival modifications. These
global patterns can be subsequently augmented by the lexicographer with rules
applying to individual units, should they exhibit some idiosyncrasy. A typical
rule for a syntactic class is shown below:

SYNTAX-TREE
(VP V (NP Art Adj N AdvP))

MODIFICATIONS
V >

TRANSFORMATIONS
Passive, N-Adj-inversion

The first part of the rule describes the constituent structure of the class in the
form of a nested list. The second part lists possible modifications, which in
this case are limited to a right-hand side modification of the verb. The last
part of the rule lists all the possible transformations that multiword expressions
belonging to this particular class can undergo.
All the classes that the linguist defines are arranged hierarchically into a tree.

This is supposed to make it easier to capture small variations in the behavior
of individual classes. For example, the rule above defines a class that has a spe-
cific constituent structure and can undergo specific transformations. However,
it is possible that there exists a class with an identical constituent structure,
but with a different list of possible transformations. Therefore, assuming that
the constituent structure is referred to as “Verb NP with-Adv”, the linguist
could establish a hierarchy of syntactic structures, whose rough approximation
is shown below:

11



ROOT
|
+--Verb_NP_with-Adv
| |
| +--with-Passive
| |
| +--with-N-Adj-inversion
| |
| +--...
|
+--...

With such a hierarchy, it is possible to refer to a higher element in order to
indicate that the idiom belong to a class which accepts all the possible trans-
formations. The syntax of referring to the defined syntactic classes is described
in more detail in the remaining part of this section.
The other formalism employed in PhraseManager, Entry Knowledge Speci-

fication (EKS), is intended for use by lexicographers, who are expected to add
descriptions of multiword expressions into the system, and indicate their trans-
formational potential by referring to the linguistic rules specified earlier by the
linguist.
A typical entry encoded with EKS consists of several parts. An example is

shown below:

HEADPHRASE
the <coast> <be> clear

RESTRICTIONS
the (Cat Art)
coast (Cat N)
be (Cat V) (Pers 3rd) (Num ’coast)
clear (Cat Adj)

MODIFICATIONS
-

CLASS
(PHClass NP.VP.fixed)

The first part of the rule defines the canonical form of the multiword expres-
sion and lists all of its constituents. The words that are surrounded by angled
brackets can be inflected, by default without any limits.
The following part lists more detailed requirements concerning the con-

stituents. The most important features encoded here are the constraints that
limit the range of inflection a word can undergo, and agreement information. In
this example the verb be should agree in number with the noun coast.
The third part is used to define non-standard modifications that go beyond

what has been described by the linguist in the rule for the syntactic class. Lastly,
the rule indicates exactly which syntactic class the multiword expression belongs
to. The notation indicates the path in the syntactic class tree (described above),

12



each step being a node of the tree positioned lower in the hierarchy than the
preceding one.
Examples of the way in which the formalism can be used for Polish can be

found in Section A.2.

3.2.2 Concluding remarks

Similarly to IDAREX, PhraseManager provides distinct operators for marking
alternative/optional elements, and words that can inflect. Unlike in IDAREX,
inflection can be precisely limited to a narrow set of possible feature combina-
tions. Information about agreement can be included in the idiom entries and is
a part of the Entry Knowledge Specification.
As far as transformations are concerned, the decision to separate the tasks

of linguists and lexicographers results in the possibility to describe them in a
declarative way (using Entry Knowledge Specification), without the need to get
involved in the complex linguistic rules when it is not necessary. Moreover, be-
cause of the two-tier architecture, it should be possible to use Entry Knowledge
Specification only, and replace the Rule Knowledge Specification backend with
other linguistic formalism that for some reasons is more desirable to use.
The disadvantages are limited to basically two issues. One of them is the

fact that it is impossible to encode semantic information. However, due to
the way the rules and the whole system are built, it seems that adding such a
functionality would be possible, should it be necessary. The other disadvantage
has to do with complexity. As it is shown in the Appendix, the formalism creates
too much overhead in the case of “syntactic idioms”, whose structure is usually
hard to define, and whose word order variations are permutations rather than
real transformations.

3.3 OntoSem

3.3.1 General description

The OntoSem project is being developed at the University of Maryland, Bal-
timore County. It is a “text processing environment that takes as input unre-
stricted text and carries out its tokenization, morphological analysis, syntactic
analysis, and semantic analysis to yield TMRs [Text-Meaning Representations]”
[8]. TMRs are formal representations of meaning in the form of an interlanguage.
OntoSem’s creators take a different approach to multiword expressions than

most other projects. They are not interested in automatic recognition of such
units, but rather seek to encode their meaning in order to be able to incorporate
them in TMRs, so that the latter faithfully render the meaning of the sentences
they represent.
Since the representation of multiword expressions in OntoSem differs only

slightly from single words, its authors claim the whole phenomenon can be
treated as a regular feature of the language, and not something special, as it is
usually done. It is not clear, though, how to treat this claim in the view of the
fact that many multiword expressions are odd or malformed from the grammat-
ical point of view, or consist of words that cannot be used independently.
OntoSem’s formalism employs a Lisp-like notation in which attributes and

their values are represented as nested lists. An example entry for the phrasal
verb go unpunished is provided below:

13



go-v25
anno
definition "phrasal: go unpunished"
example "The crime went unpunished."
syn-struc
subject $var1
v $var0
adj $var2 root unpunished
sem-struc
PUNISH
theme ^$var1

Each multiword expression is represented by a single headword, in this case
go. All the non-head elements are listed in the syntactic structure. They can be
constrained to appear only with particular inflectional features. Their forms can
be constrained even further in the semantic part, where it is possible to state,
e.g., that the phrasal verb to go down means “sink” if and only if its subject is
a marine vehicle.
If the described multiword expression has irregular structure, the entry may

explicitly state what kind of function it performs in sentences (clause, adver-
bial, etc.). If the expression exhibits regular structure, the OntoSem parser
by default assumes that all the possible transformations might apply to it. In
the case of units that loose their idiomatic meaning when subjected to spe-
cific operations, it is possible to block transformations altogether by encoding
the multiword expression in terms of immediate constituents and not syntactic
functions. Unfortunately, there is no way to block selected transformations.
By default the constituents listed in the syntactic structures are assumed

to permit all their normal adverbial or adjectival modifications. Also, the con-
stituents are assumed to be able to undergo all the usual morphological pro-
cesses. In case it is needed, they can also be blocked by specifying the required
grammatical features explicitly.
The second level of indentation divides the description into three parts. The

first one contains metadata, in this case a definition and a usage example. The
syntactic structure in the second part is divided further on into individual con-
stituents. The var elements are variables assigned to each of the constituents.
These are used to bind the syntactic functions to semantic roles. It is exem-
plified in the semantic structure part above, which indicates that the subject is
also the theme. The specification following $var2 says that the base form of
the word serving the adj function is unpunished.
Apart from the operators mentioned in the above example, OntoSem makes

it possible to specify other grammatical features (e.g., cat n or form infinitive),
and to indicate that a constituent is optional. Also the semantic structure part
allows a far more detailed representation, but semantics is not the focus of this
report.
Some examples of Polish multiword expressions encoded with OntoSem’s

formalism can be seen in Section A.3.

14



3.3.2 Adequacy for encoding Polish idioms

One feature of OntoSem that is worth adopting is the possibility to encode
the constituents of multiword expressions in two ways: either at the level of
dependencies, or at the level of immediate constituents. The former could be
used for “semantic”, and the latter for “syntactic” idioms.
Apart from this, the formalism has several drawbacks. Idioms that are

syntactically idiosyncratic can only be described as being completely frozen,
which is not true for some Polish multiword expressions (cf. Section 2). In
the case of such expressions, allowing word order variations requires listing all
the possible variants as separate units, which might lead to an undesirable
proliferation of similar entities. What is lacking for a proper description of
idioms that follow regular grammar patterns is the possibility to block individual
transformations, since many multiword expressions can undergo only a limited
set of transformations beyond which they lose their idiomatic meaning.
OntoSem is not compatible with the aim of this report, which is finding

an appropriate formalism for surface processing of multiword expressions. The
formalism features advanced mechanisms to handle semantics, which are largely
omitted in the report, but syntactic processing relies on external components.
Thus, OntoSem might be useful for processing semantic idioms after the tools
for surface processing have been developed — it is not such a tool on its own.

4 Other formalisms

This section presents two more formalisms that to some extent are suitable for
encoding Polish idioms, even though their primary purpose is different. The
first one has been presented in [2], and could be extended to a fully-fledged
formalism even though at the moment it is rather inconsistent. The book it is
described in is also noteworthy because of the lexicographic material it contains.
The other formalism is the query language of Poliqarp, a concordancer devel-

oped and maintained at IPI PAN. The language is very expressive and is under
constant development, and the tools to process it are currently freely available.

4.1 Bogusławski and Danielewiczowa

The formalism presented in [2] was created for phraseological descriptions. The
book is a lexicographic study that also covers single-word lexemes, but the bulk
of it is devoted to multiword expressions and various syntactic patterns.
The formalism makes it possible to create very detailed descriptions of mul-

tiword expressions. A typical example is presented below:

ktośi jest po j głębszych ◦
K : j : fraza liczebnikowa
|S| i wypił j kieliszków mocnego alkoholu
|P| A syt pot.
5 Franio jest po 2 głębszych, nie może siadać za kierownicą.

Translated to English, it assumes the following form:

somebodyi is after j deeper ones ◦
K : j : numeral phrase

15



|S| i had j shots of liquor
|P| A syt pot.
5 Frank had two shots of liquor, he can’t drive.

In the above example, ktośi serves the purpose of a slot that can be filled
with a noun phrase in the nominative case. j indicates an empty slot that
can be filled with something different than a nominal noun phrase, in this case
a numeral. The subcategorization constraint is directly stated in the line be-
ginning with K, whose purpose is to provide information about empty valence
slots. The ◦ symbol means that the described unit can be used independently
as a sentence (after fulfilling all the valence requirements). The S line contains
semantic information, and P covers pragmatics. The last line provides a usage
example.
Other features of the formalism are illustrated by these (abbreviated) en-

tries:7

|<więcej> czadu ◦ |
. . .

tak ≺taki� , że nie wiem ◦ [tak że nie wiem]
. . .

Words enclosed between < and > are optional. The symbol marks the first
part of an alternative, whereas ≺ and � enclose the other one. The vertical bars
in the first example indicate that the multiword expression cannot be attached
to a bigger structure, neither on the left nor on the right side.
The part in the square brackets contains “prosodic information”. Its pur-

pose is mainly to indicate continuity of segments — the double underline symbol
means that it is impossible to insert anything between the words which it con-
nects.
There are two other lines that can appear in the descriptions, which are not

included in the above examples. One of them is F which contains information
about inflection, and particularly deficiencies, such as a word being restricted
only to plural form within the multiword expression in question. The other
one is TR which informally describes the unit’s place in a sentence’s thematic
structure.
The formalism presented above has been created with human users in mind,

and therefore too little information is stated explicitly, and too much has to
be inferred from the general knowledge of the language, which is something
that computers cannot do. Therefore, it does not seem to be immediately
suitable for computational purposes, although the book remains a great source
of lexicographic information.
The information that is missing from multiword expression descriptions is

first and foremost word order variations.8 Besides, the descriptions generally
fail to account for possible adverbial and adjectival modifications, and often do
not list all the potential lexical variations. Possible syntactic transformations
are neither provided, nor is there a place to include them in the descriptions.

7The first one roughly means ‘pump it up!’, and the second one ‘(something is) so ..., I
can’t believe it!’.
8However, the prosodic information indicates which words cannot be separated, which in

some cases also reflects the possible word order variations within a unit.

16



As far as semantics is concerned, the informal explanations of the units
provided in the S lines is unsuitable for computational purposes. At times they
seem to be inconsistent, as they either refer to the indexed slots included in
the multiword expression patterns (“ i nie j , wbrew temu, co ktoś mówi” —
‘ i is not j , contrary to what somebody says’), or use plain, vocal descriptions
(“możliwości wiadomej osoby w wiadomej dziedzinie nie są nieprzeciętne” —
‘the given person’s abilities in the given field are not exceptional’).

4.2 Poliqarp’s query language

The query language of Poliqarp [6, 5] is described in detail on the official website
of the IPI PAN corpus of Polish.9 Poliqarp is the primary tool for searching the
corpus, and is under constant development.10 For the purposes of this report,
the presentation of the query language will be limited to orthographic level
queries and morphosyntactic tag queries.
Orthographic level queries are invoked using the orth directive. The string

to be matched can be specified either directly, or indirectly by means of regular
expressions. The following examples contain sample queries (each word needs a
separate directive):

[orth="na"][orth="oklep"]
[orth="na|po"][orth="o.*"]

The morphosyntactic level queries can refer to an arbitrary number of in-
flectional features thanks to the conjunction operator. Constraining the set of
matched words is made easier because the negation operator is supported by
the language. Complex queries can refer both to the orthographic and the mor-
phosyntactic level (names of parts of speech in the examples below follow the
convention used in the IPI PAN corpus):

[pos="subst" & case="gen" & number="pl"]
[pos="subst" & case!="voc"]
[pos="adj" & case="gen" & orth="[a|e].*"]

Queries that refer to the morphosyntactic level can also be combined with simple
regular expressions:

[pos="adv"]*[pos=adj]

All these abilities could be combined, e.g., to handle one of the problematic
cases mentioned in Section 2.3 (Rok 〈. . . 〉-wski):

[base="rok"][orth=".*wski.*"]

The drawbacks of encoding multiword expressions with Poliqarp’s language
are twofold. Firstly, there is no way to list possible transformations in a declar-
ative way to be handled by an external mechanism. It is also impossible to
indicate that an idiom is a permutable list of words. Therefore, word order
variations need to be explicitly indicated by listing all the possible realizations
of an expression.
9http://korpus.pl/pl/cheatsheet/index.html
10http://poliqarp.sf.net

17



Moreover, as of yet the query language does not support unification which is
necessary to handle agreement. However, an implementation of this mechanism
is planned for the future.
On the whole, Poliqarp seems to be well suited for encoding idioms of the

syntactic kind, in the case of which the drawbacks mentioned above are not
crucial. Some examples of Polish idioms formalized in the language are included
in Section A.5.

5 Conclusions

Polish multiword expressions can be divided into two groups. On the one hand
there are idioms that are problematic for surface language processing (the “syn-
tactic idioms”), and on the other one are units whose non-compositional mean-
ing requires special attention in lexicographic and translation applications (the
“semantic idioms”).
Both types include non-fixed phrases that exhibit a certain amount of varying

word order and modifications/substitutions, but it is the second type that is
much more complex from this point of view. Formalization of the syntactic
idioms can be achieved with relatively simple means, whereas semantic idioms
need rules that reflect a large part of a language’s grammar.
As the presentation of the formalisms in Section 3 has shown, the attempts

to account for all the phenomena labeled as multiword expressions with a single
tool are not successful, especially in the case of inflectional languages. The
formalisms tend to be either too weak for handling the most complex idioms,
or too powerful for the simple ones. We believe the rough division of idioms
presented above is a good approximation of how multiword expressions should
be processed computationally. We postulate processing both groups separately
at different stages of the NLP workflow, using different tools if necessary.
Syntactic idioms display abnormal structure or contain constituents that do

not appear independently, and thus are problematic to all kinds of automatic
analyzers. Therefore, we believe they should be recognized before syntactic
analysis, presumably during the preprocessing stage when all kinds of named
entities are tagged.
Semantic idioms are in many cases as complex as any non-idiomatic sen-

tences in the given language, and thus their formal representation requires a
full-featured grammar. In our opinion, the process of their recognition should
take place during syntactic analysis, and only if it is required by the application
(e.g., in the case of electronic dictionaries).

A Appendix

Actual usage of the presented formalisms will be based on three multiword
expressions of varying degrees of complexity. The first one is the following:

(13) no
oh
nie
no

‘oh, please...’

18



A formal syntactic structure of the expressions is hard to establish, because the
constituents do not represent any well-defined parts of speech. The expression
does not allow for any variations apart from switching the constituents’ order
(however, it would be hard to call it a transformation bearing in mind that the
expression’s structure cannot be established — it is rather a random permuta-
tion; also, such word order variations do not belong to the set of transformations
defined in [14]).
The second example is a conventionalized curse that functions as an inde-

pendent sentence:11

(14) niech
let

NP Acc
NP Acc

szlag
*

trafi
hit Future

‘damn NP Acc’

The NP Acc slot can be filled with any pronoun or noun, as well as complex
nominal phrases, such as to wszystko (‘all this’). The word order is very variable,
since Niech NP Acc trafi szlag!, Szlag niech NP Acc trafi!, Niech trafi NP Acc
szlag!, and Niech szlag trafi NP Acc! are all acceptable. However, like in the
previous example, the variations do not belong to the set of transformations
listed in [14].

(15) NP-Nom
NP-Nom

wziąć
take

nogi
legs-Acc

za
behind

pas
belt-Acc

‘to run away’

In the case of this multiword expression, it is necessary to include the subject
in the description. It can be absent altogether, it can appear at the very be-
ginning of the multiword expression without breaking its continuity, but it can
also appear after the verb, between the core constituents. The subject can be
of arbitrary length and needs to agree in morphosyntactic features (number,
gender, and person) with the verb.
The verb can be modified with adverbial phrases, both on the left hand side

and the right hand side. However, if the subject is postponed to a position after
the verb, all the potential right hand side adverbials need to be attached after
the subject, and not directly after the verb.
Although not very frequent, the expression also has a nominalized variant

(wzięcie nóg za pas), in which the verb becomes a gerund, and the noun nogi
switches case to genitive.

A.1 IDAREX

(16) [:no :nie | :nie :no];

The description produces exactly two strings, which reflects changing the order
of the two constituents.

(17) [:niech NP Acc :szlag :trafi] | \
[:niech :szlag NP Acc :trafi] | \
[:szlag :niech NP Acc :trafi] | \
[:niech :trafi NP Acc :szlag] | \
[:niech :szlag :trafi NP Acc];

11The word marked with the asterisk is untranslatable.

19



The description produces five strings that reflect the possible word order varia-
tions.

(18) NP Nom wziąć: :nogi :za :pas;

The subject-verb inversion and adverbial modifications in the example can be
handled by means of the following macros (the mechanism is described in more
detail in Section 3.1.2):

AdvMacro
[Adv* $1 | $1 Adv*]

WOMacro
[$1 AdvMacro($2) $3 $4 $5 | AdvMacro($2) $1 $3 $4 $5]

When the macro is expanded, the following expression results:

[NP Nom Adv* wziąć: Adv* :nogi :za :pas] | \
[Adv* wziąć: Adv* NP Nom :nogi :za :pas];

However, such a description suffers from overgeneration, as it can produce a
variant in which the right hand side adverbial incorrectly appears before the
postponed subject. A possible ad hoc solution is to create another macro for
inserting an optional adverb on the right hand side of the subject.
It is not possible to encode subject-verb agreement, which makes the de-

scription unsuitable for generation, and creates a risk of accepting wrong input.
There is also no way to handle nominalization, as it is not possible to indicate
that a given word becomes a gerund or switches case. This can be overcome
by relaxing the constraints and encoding the noun nogi on the lexical, and not
the surface level. However, this might further increase the number of spurious
realizations.

A.2 PhraseManager

(19) HEADPHRASE
nie no

RESTRICTIONS
-

MODIFICATIONS
-

CLASS
(PHClass Neg.Qub.permutable)

Although the expression is extremely simple and consists of words whose parts
of speech are hard to define, in PhraseManager it is necessary to create a sep-
arate syntactic class for it. We reserve the top level class (Neg.Qub) for other

20



possible expression with the same structure that do not have varying word or-
der, and create a permutable subclass for the expression in question:

SYNTAX-TREE
(Interjection Neg Qub)

MODIFICATIONS
-

TRANSFORMATIONS
Permutation

The syntax tree encodes a hypothetical “interjection” type expression that con-
sists of a negation element and a “qub” element whose part of speech cannot be
reliably established. The permutation rule has the following form:

(Interjection Neg Qub) → (Interjection Qub Neg)

(20) HEADPHRASE
niech noun szlag trafi

RESTRICTIONS
noun (Cat N) (Case acc)

MODIFICATIONS
-

CLASS
(PHClass Qub.NP.N.V.permutable)

Since the morphological restrictions section does not provide an alternative oper-
ator, it is not clear how to indicate that the noun element can also be a pronoun
or a complex noun phrase. The syntactic class can be defined as follows:

SYNTAX-TREE
(Sentence Qub NP N V)

MODIFICATIONS
-

TRANSFORMATIONS
Permutation

The syntax tree defines a sentence-type expression with a flat, four element
structure. In this case, the transformation is a group of four rules:

Permutation
(Sentence Qub NP N V) → (Sentence Qub N NP V)
(Sentence Qub NP N V) → (Sentence Qub V NP N)
(Sentence Qub NP N V) → (Sentence N Qub NP V)
(Sentence Qub NP N V) → (Sentence Qub N V NP)

21



(21) HEADPHRASE
NP <wziąć> nogi za pas

RESTRICTIONS
NP (Cat Noun) (Case Nom)
wziąć (Cat V) (Num ’NP) (Gen ’NP) (Pers ’NP)
nogi (Cat Noun) (Num Pl) (Case Acc)
za (Cat Prep)
pas (Cat Noun) (Num Sg) (Case Acc)

MODIFICATIONS
-

CLASS
(PHClass NP.VP.NP.PP)

Unlike in IDAREX, the description above accounts for subject-verb agreement.
The syntactic class the expression belongs to can be defined as follows:

SYNTAX-TREE
(Sentence NP (VP V N PP))

MODIFICATIONS
V <,>

TRANSFORMATIONS
Subject-Verb-Inversion

There are several problems with defining the transformations for this class of
multiword expressions. First of all, as it has been noted above, if the verb
is modified on the right and the subject is postponed, the latter needs to be
put after the modifier. Since in PhraseManager the transformation rules are
independent of the modification rules, it is not possible to establish a condition
of the form “if verb has been modified, postpone the subject to a position after
the adverb”. Therefore, just as in the case of IDAREX, the description can
overgenerate the incorrect variant. The inversion rule can have the following
form:

(Sentence NP (VP V N PP)) → (Sentence (VP V N PP) NP)

PhraseManager does not provide the means to create rules that change mor-
phosyntactic features of a given word. Since nominalization requires transform-
ing the verb into gerund and switching the case of the object, it follows that
nominalization is impossible to encode by any means other than indicating that
the object can inflect and relaxing the constraints on it in the RESTRICTIONS
section so that other cases are allowed. However, this can lead to overgeneration
and accepting wrong input. It would also only work with the assumption that
the underlying morphological system treats gerunds as subforms of words that
belong to the class V.

22



A.3 OntoSem

The descriptions in this section are missing meaning definitions and semantic
data. In OntoSem all the syntactic transformations are handled by an external
grammar component, which is why the entries below reflect only the constituent
structures of the expressions.
The first two expressions are encoded at the immediate constituent level,

which in the case of OntoSem implies that they cannot undergo any word order
variations. The only way to account for the variations in their case is to list
all the possible variants as separate entries or artificially assign them with a
dependency structure, which might be plausible in the second example, but not
in the first one.

(22) nie-1
syn-struc
neg $var0 root nie
qub $var1 root no

(23) trafić-1
syn-struc
qub $var0 root niech
n $var1 cat noun case acc
n $var2 root szlag
v $var3 root trafić

(24) wziąć-1
syn-struc
subject $var0
v $var1 root wziąć
object $var2 root noga number pl case acc
pp
prep $var3 root za
prep-obj $var4 root pas number sg case acc

A.4 Bogusławski and Danielewiczowa

The descriptions are limited to the surface form and the prosodic information.
It is interesting to note that in the case of (27) the double underscores, which
indicate the lack of potential for modifications also reflect the inability to switch
the order of the given constituents. This, however, is not the case in (26).
The descriptions do not account for possible transformations and word order

variations. At this moment, the formalism does not include the means to encode
such information (other than listing all the variants).

(25) | no nie ≺nie no� ◦ [no nie]

(26) | niech kogoś/cośi szlag trafi | ◦ \
[niech kogoś/cośi szlag trafi]

(27) | ktośi wziął nogi za pas | ◦ \
[ktośi wziął nogi za pas]

23



A.5 Poliqarp

In its current form, the language of Poliqarp does not allow querying for phrases,
so the descriptions below are limited to the word level. It also does not have
a means to account for morphosyntactic agreement between constituents. Due
to the purposes it has been created for, it also does not currently have any
possibilities to encode transformations, and therefore all word order variants
are handled with the alternative operator.

(28) [orth="no"][orth="nie"] | \
[orth="nie"][orth="no"]

The description produces exactly two strings, which reflects changing the order
of the two constituents.

(29) [orth="niech"][pos="subst"][orth="szlag"][orth="trafi"] | \
[orth="niech"][pos="subst"][orth="trafi"][orth="szlag"] | \
[orth="niech"][orth="szlag"][pos="subst"][orth="trafi"] | \
[orth="niech"][orth="trafi"][pos="subst"][orth="szlag"] | \
[orth="niech"][orth="szlag"][orth="trafi"][pos="subst"]

A series of alternatives that can produce five possible realizations.12

(30) [pos="subst" & case="nom"]? \
[pos="adv|qub"]*[base="wziąć"][pos="adv|qub"]* \
[pos="subst" & case="nom"]? \
[orth="nogi"][orth="za"][orth="pas"]

A very complex description that suffers from overgeneration, as it can produce
a variant in which the right hand side adverbial incorrectly appears before the
postponed subject, as well as a variant with two subjects. There is now way to
account for the possible complexity of the subject.13

By combining the base operator with appropriate morphosyntactic restric-
tions (e.g., [base="noga" & case="acc" & number="pl"] and [base="noga"
& case="gen" & number="pl"], it is possible to account for nominalization in
the last example. However, there is no way to actually indicate that it is a
transformation — it is necessary to use the alternative operator, which further
complicates the already complex description.

Acknowledgments
I would like to thank Agata Savary and Janusz S. Bień for reading the initial

version of the report and providing valuable suggestions. I would also like to
thank Adam Przepiórkowski for his numerous improvement suggestions and his
help in preparing the final version of the text.

12For the sake of simplicity, the expressions are missing additional constraints on the case
of the object.
13A phrasal version of Poliqarp is in the making, so in the future it will be possible to
substitute the [pos="subst"] simplification with a query for a nominal group: [type="NG"],
as described in [13].

24



References

[1] D. Bauer, F. Segond, and A. Zaenen. Locolex: The translation rolls off
your tongue. In Proceedings of ACH-ALLC, Santa Barbara, CA, 1995.

[2] A. Bogusławski and M. Danielewiczowa. Verba polona abscondita. Sonda
słownikowa III, volume XXIV of Semiosis Lexicographica. Elma Books,
Warszawa, 2005.

[3] E. Breidt, F. Segond, and G. Valetto. Formal description of multi-word
lexemes with the finite-state formalism idarex. In Proceedings of the
16th Conference on Computational Linguistics, volume 2, pages 1036–
1040, Morristown, NJ, 1996. Association for Computational Linguistics.
http://acl.ldc.upenn.edu/C/C96/C96-2182.pdf.

[4] J. Brundage, M. Kresse, U. Schwall, and A. Storrer. Multiword lexemes: A
monolingual and contrastive typology for NLP and MT. Technical Report
IWBS 232, IBM Deutschland GmbH, Institut für Wissenbasierte Systeme,
Heidelberg, 1992.

[5] D. Janus. Metody przeszukiwania i obrazowania jego wyników w dużych
korpusach tekstów. Master’s thesis, Uniwersytet Warszawski, Wydział
Matematyki, Informatyki i Mechaniki, Warsaw, 2006.

[6] D. Janus and A. Przepiórkowski. Poliqarp 1.0: Some technical aspects of a
linguistic search engine for large corpora. In J. Waliński, K. Kredens, and
S. Goźdź-Roszkowski, editors, The proceedings of Practical Applications of
Linguistic Corpora 2005, Frankfurt am Main, 2006. Peter Lang.

[7] L. Karttunen, J.-P. Chanod, G. Grefenstette, and A. Schiller. Regu-
lar expressions for language engineering. Natural Language Engineering,
2(4):305–328, 1996. http://www2.parc.com/istl/members/karttune/
publications/jnle-97/rele.pdf.

[8] M. McShane, S. Nirenburg, and S. Beale. The description and processing
of multiword expressions in ontosem. Technical Report 07-05, Institute for
Language and Information Technologies. University of Maryland Baltimore
County, 2005. http://ilit.umbc.edu/ILIT_Working_papers/ILIT_WP_
07-05_Multiword_Exprs.pdf.

[9] M. McShane, S. Nirenburg, and S. Beale. Multi-word entities
in human- and machine-oriented lexicons. http://ilit.umbc.edu/
MargePub/multiWordFinal.doc, 2006.

[10] R. Moszczyński. Formal approaches to multiword lexemes. Master’s thesis,
Uniwersytet Warszawski, Wydział Neofilologii, Warsaw, 2006. http://
www.mimuw.edu.pl/~jsbien/RM/3301-MGR-FL-A-81032003614.pdf.

[11] G. Nunberg, I. A. Sag, and T. Wasow. Idioms. Language, 70(3):491–538,
1994. http://lingo.stanford.edu/sag/papers/idioms.pdf.

[12] S. Pedrazzini. Phrase Manager: A System for Phrasal and Idiomatic
Dictionaries. Georg Olms Verlag, Hildeseim, Zürich, New York, 1994.

25



[13] A. Przepiórkowski. On heads and coordination in a partial treebank. In
J. Hajič and J. Nivre, editors, Proceedings of the TLT 2006, pages 163–174,
2006.

[14] Z. Saloni and M. Świdziński. Składnia współczesnego języka polskiego.
Wydawnictwo Naukowe PWN, Warszawa, 4 edition, 1998.

[15] F. Segond and E. Breidt. IDAREX: Formal description of German and
French multi-word expressions with finite state technology. Technical Re-
port MLTT-022, Rank Xerox Research Centre, Grenoble, 1995.

[16] F. Segond and P. Tapanainen. Using a finite-state based formalism to
identify and generate multiword expressions. Technical Report MLTT-019,
Rank Xerox Research Centre, Grenoble, 1995.

[17] C. Tschichold. English multi-word lexemes in a lexical database. In
M. F. Verdejo, editor, Proc. of the ESSLI Workshop on the Computational
Lexicon, 1995.

26


